01、Redis 源码剖析 - 链表结构

Redis源码剖析—链表结构

1. redis中的链表

在redis中链表的应用非常广泛,例如列表键的底层实现之一就是链表。而且,在redis中的链表结构被实现成为双向链表,因此,在头部和尾部进行的操作就会非常快。

 127.0.0.1:6379> LPUSH list a b c    //依次在链表头部插入a、b、c
(integer) 3
127.0.0.1:6379> RPUSH list d e f    //依次在链表尾部插入d、e、f
(integer) 6
127.0.0.1:6379> LRANGE list 0 -1    //查看list的值
1) "c"
2) "b"
3) "a"
4) "d"
5) "e"
6) "f"

2. 链表的实现

2.1 链表节点的实现

每个链表节点由adlist.h/listNode来表示

 typedef struct listNode {
    struct listNode *prev; //前驱节点,如果是list的头结点,则prev指向NULL
    struct listNode *next;//后继节点,如果是list尾部结点,则next指向NULL
    void *value;            //万能指针,能够存放任何信息
} listNode;

listNode结构通过prev和next指针就组成了双向链表。刚才通过列表键生成的双向链表如下图

使用双向链表的好处:

  • prev和next指针:获取某个节点的前驱节点和后继节点复杂度为O(1)。

2.2 表头的实现

redis还提供了一个表头,用于存放上面双向链表的信息,它由adlist.h/list结构表示:

 typedef struct list {
    listNode *head;     //链表头结点指针
    listNode *tail;     //链表尾结点指针

    //下面的三个函数指针就像类中的成员函数一样
    void *(*dup)(void *ptr);    //复制链表节点保存的值
    void (*free)(void *ptr);    //释放链表节点保存的值
    int (*match)(void *ptr, void *key); //比较链表节点所保存的节点值和另一个输入的值是否相等
    unsigned long len;      //链表长度计数器
} list;

将表头和双向链表连接起来,如图:

利用list表头管理链表信息的好处:

  • head和tail指针:对于链表的头结点和尾结点操作的复杂度为O(1)。
  • len 链表长度计数器:获取链表中节点数量的复杂度为O(1)。
  • dup、free和match指针:实现多态,链表节点listNode使用万能指针void *保存节点的值,而表头list使用dup、free和match指针来针对链表中存放的不同对象从而实现不同的方法。

3. 链表结构源码剖析

3.1 adlist.h文件

针对list结构和listNode结构的赋值和查询操作使用宏进行封装,而且一下操作的复杂度均为O(1)

 #define listLength(l) ((l)->len)                    //返回链表l节点数量
#define listFirst(l) ((l)->head)                    //返回链表l的头结点地址
#define listLast(l) ((l)->tail)                     //返回链表l的尾结点地址
#define listPrevNode(n) ((n)->prev)                 //返回节点n的前驱节点地址
#define listNextNode(n) ((n)->next)                 //返回节点n的后继节点地址
#define listNodeValue(n) ((n)->value)               //返回节点n的节点值

#define listSetDupMethod(l,m) ((l)->dup = (m))      //设置链表l的复制函数为m方法
#define listSetFreeMethod(l,m) ((l)->free = (m))    //设置链表l的释放函数为m方法
#define listSetMatchMethod(l,m) ((l)->match = (m))  //设置链表l的比较函数为m方法

#define listGetDupMethod(l) ((l)->dup)              //返回链表l的赋值函数
#define listGetFree(l) ((l)->free)                  //返回链表l的释放函数
#define listGetMatchMethod(l) ((l)->match)          //返回链表l的比较函数

链表操作的函数原型(Prototypes):

 list *listCreate(void);                                 //创建一个表头
void listRelease(list *list);                           //释放list表头和链表
list *listAddNodeHead(list *list, void *value);         //将value添加到list链表的头部
list *listAddNodeTail(list *list, void *value);         //将value添加到list链表的尾部
list *listInsertNode(list *list, listNode *old_node, void *value, int after);//在list中,根据after在old_node节点前后插入值为value的节点。
void listDelNode(list *list, listNode *node);           //从list删除node节点

listIter *listGetIterator(list *list, int direction);   //为list创建一个迭代器iterator
listNode *listNext(listIter *iter);                     //返回迭代器iter指向的当前节点并更新iter       
void listReleaseIterator(listIter *iter);               //释放iter迭代器

list *listDup(list *orig);                              //拷贝表头为orig的链表并返回
listNode *listSearchKey(list *list, void *key);         //在list中查找value为key的节点并返回
listNode *listIndex(list *list, long index);            //返回下标为index的节点地址
void listRewind(list *list, listIter *li);              //将迭代器li重置为list的头结点并且设置为正向迭代
void listRewindTail(list *list, listIter *li);          //将迭代器li重置为list的尾结点并且设置为反向迭代
void listRotate(list *list);                            //将尾节点插到头结点

3.2 链表迭代器

在adlist.h文件中,使用C语言实现了迭代器,源码如下:

 typedef struct listIter {
    listNode *next;     //迭代器当前指向的节点(名字叫next有点迷惑)
    int direction;      //迭代方向,可以取以下两个值:AL_START_HEAD和AL_START_TAIL
} listIter

#define AL_START_HEAD 0 //正向迭代:从表头向表尾进行迭代
#define AL_START_TAIL 1 //反向迭代:从表尾到表头进行迭代

在listDup函数中就使用了迭代器,listDup函数的定义如下:

 //listDup的功能是拷贝一份链表
list *listDup(list *orig)
{
    list *copy;
    listIter *iter;
    listNode *node;

    if ((copy = listCreate()) == NULL)  //创建一个表头
        return NULL;

    //设置新建表头的处理函数
    copy->dup = orig->dup;
    copy->free = orig->free;
    copy->match = orig->match;

    //迭代整个orig的链表,重点关注此部分。
    iter = listGetIterator(orig, AL_START_HEAD);//为orig定义一个迭代器并设置迭代方向,在c++中例如是  vector<int>::interator it;
    while((node = listNext(iter)) != NULL) {    //迭代器根据迭代方向不停迭代,相当于++it
        void *value;

        //复制节点值到新节点
        if (copy->dup) {    //如果定义了list结构中的dup指针,则使用该方法拷贝节点值。
            value = copy->dup(node->value);
            if (value == NULL) {
                listRelease(copy);
                listReleaseIterator(iter);
                return NULL;
            }
        } else
            value = node->value;    //获得当前node的value值

        if (listAddNodeTail(copy, value) == NULL) { //将node节点尾插到copy表头的链表中
            listRelease(copy);
            listReleaseIterator(iter);
            return NULL;
        }
    }

    listReleaseIterator(iter);    //自行释放迭代器
    return copy;    //返回拷贝副本
}

迭代器的好处:

  • 提供一种方法顺序访问一个聚合对象中各个元素, 而又不需暴露该对象的内部表示。
  • 将指针操作进行了统一封装,代码可读性增强。

3.3 adlist.c文件

刚才所有函数的定义如下:

 list *listCreate(void)  //创建一个表头
{
    struct list *list;

    //为表头分配内存
    if ((list = zmalloc(sizeof(*list))) == NULL)
        return NULL;
    //初始化表头
    list->head = list->tail = NULL;
    list->len = 0;
    list->dup = NULL;
    list->free = NULL;
    list->match = NULL;

    return list;    //返回表头
}

/* Free the whole list.
 *
 * This function can't fail. */
void listRelease(list *list)    //释放list表头和链表
{
    unsigned long len;
    listNode *current, *next;

    current = list->head;   //备份头节点地址
    len = list->len;        //备份链表元素个数,使用备份操作防止更改原有信息
    while(len--) {          //遍历链表
        next = current->next;
        if (list->free) list->free(current->value); //如果设置了list结构的释放函数,则调用该函数释放节点值
        zfree(current);
        current = next;
    }
    zfree(list);    //最后释放表头
}

/* Add a new node to the list, to head, containing the specified 'value'
 * pointer as value.
 *
 * On error, NULL is returned and no operation is performed (i.e. the
 * list remains unaltered).
 * On success the 'list' pointer you pass to the function is returned. */
list *listAddNodeHead(list *list, void *value)  //将value添加到list链表的头部
{
    listNode *node;

    if ((node = zmalloc(sizeof(*node))) == NULL)    //为新节点分配空间
        return NULL;
    node->value = value;    //设置node的value值

    if (list->len == 0) {   //将node头插到空链表
        list->head = list->tail = node;
        node->prev = node->next = NULL;
    } else {                //将node头插到非空链表
        node->prev = NULL;
        node->next = list->head;
        list->head->prev = node;
        list->head = node;
    }

    list->len++;    //链表元素计数器加1

    return list;
}

/* Add a new node to the list, to tail, containing the specified 'value'
 * pointer as value.
 *
 * On error, NULL is returned and no operation is performed (i.e. the
 * list remains unaltered).
 * On success the 'list' pointer you pass to the function is returned. */
list *listAddNodeTail(list *list, void *value)  //将value添加到list链表的尾部
{
    listNode *node;

    if ((node = zmalloc(sizeof(*node))) == NULL)    //为新节点分配空间
        return NULL;
    node->value = value;    //设置node的value值
    if (list->len == 0) {   //将node尾插到空链表
        list->head = list->tail = node;
        node->prev = node->next = NULL;
    } else {                //将node头插到非空链表
        node->prev = list->tail;
        node->next = NULL;
        list->tail->next = node;
        list->tail = node;
    }
    list->len++;    //更新链表节点计数器

    return list;
}

list *listInsertNode(list *list, listNode *old_node, void *value, int after)    //在list中,根据after在old_node节点前后插入值为value的节点。
{
    listNode *node;

    if ((node = zmalloc(sizeof(*node))) == NULL) //为新节点分配空间
        return NULL;
    node->value = value;    //设置node的value值

    if (after) {    //after 非零,则将节点插入到old_node的后面
        node->prev = old_node;
        node->next = old_node->next;
        if (list->tail == old_node) {   //目标节点如果是链表的尾节点,更新list的tail指针
            list->tail = node;
        }
    } else {        //after 为零,则将节点插入到old_node的前面
        node->next = old_node;
        node->prev = old_node->prev;
        if (list->head == old_node) {   //如果节点如果是链表的头节点,更新list的head指针
            list->head = node;
        }
    }
    if (node->prev != NULL) {   //如果有,则更新node的前驱节点的指针
        node->prev->next = node;
    }
    if (node->next != NULL) {   //如果有,则更新node的后继节点的指针
        node->next->prev = node;
    }
    list->len++;    //更新链表节点计数器
    return list;
}

/* Remove the specified node from the specified list.
 * It's up to the caller to free the private value of the node.
 *
 * This function can't fail. */
void listDelNode(list *list, listNode *node)    //从list删除node节点
{
    if (node->prev) //更新node的前驱节点的指针
        node->prev->next = node->next;
    else
        list->head = node->next;
    if (node->next) //更新node的后继节点的指针
        node->next->prev = node->prev;
    else
        list->tail = node->prev;

    if (list->free) list->free(node->value);    //如果设置了list结构的释放函数,则调用该函数释放节点值
    zfree(node);    //释放节点
    list->len--;    //更新链表节点计数器
}

/* Returns a list iterator 'iter'. After the initialization every
 * call to listNext() will return the next element of the list.
 *
 * This function can't fail. */
listIter *listGetIterator(list *list, int direction)    //为list创建一个迭代器iterator
{
    listIter *iter;

    if ((iter = zmalloc(sizeof(*iter))) == NULL) return NULL;   //为迭代器申请空间
    if (direction == AL_START_HEAD)     //设置迭代指针的起始位置
        iter->next = list->head;
    else
        iter->next = list->tail;
    iter->direction = direction;        //设置迭代方向
    return iter;
}

/* Release the iterator memory */
void listReleaseIterator(listIter *iter) {  //释放iter迭代器
    zfree(iter);
}

/* Create an iterator in the list private iterator structure */
void listRewind(list *list, listIter *li) { //将迭代器li重置为list的头结点并且设置为正向迭代
    li->next = list->head;              //设置迭代指针的起始位置
    li->direction = AL_START_HEAD;      //设置迭代方向从头到尾
}

void listRewindTail(list *list, listIter *li) { //将迭代器li重置为list的尾结点并且设置为反向迭代
    li->next = list->tail;              //设置迭代指针的起始位置
    li->direction = AL_START_TAIL;      //设置迭代方向从尾到头
}

/* Return the next element of an iterator.
 * It's valid to remove the currently returned element using
 * listDelNode(), but not to remove other elements.
 *
 * The function returns a pointer to the next element of the list,
 * or NULL if there are no more elements, so the classical usage patter
 * is:
 *
 * iter = listGetIterator(list,<direction>);
 * while ((node = listNext(iter)) != NULL) {
 *     doSomethingWith(listNodeValue(node));
 * }
 *
 * */
listNode *listNext(listIter *iter)  //返回迭代器iter指向的当前节点并更新iter
{
    listNode *current = iter->next; //备份当前迭代器指向的节点

    if (current != NULL) {
        if (iter->direction == AL_START_HEAD)   //根据迭代方向更新迭代指针
            iter->next = current->next;
        else
            iter->next = current->prev;
    }
    return current;     //返回备份的当前节点地址
}

/* Duplicate the whole list. On out of memory NULL is returned.
 * On success a copy of the original list is returned.
 *
 * The 'Dup' method set with listSetDupMethod() function is used
 * to copy the node value. Otherwise the same pointer value of
 * the original node is used as value of the copied node.
 *
 * The original list both on success or error is never modified. */
list *listDup(list *orig)   //拷贝表头为orig的链表并返回
{
    list *copy;
    listIter *iter;
    listNode *node;

    if ((copy = listCreate()) == NULL)  //创建一个表头
        return NULL;

    //设置新建表头的处理函数
    copy->dup = orig->dup;
    copy->free = orig->free;
    copy->match = orig->match;
    //迭代整个orig的链表
    iter = listGetIterator(orig, AL_START_HEAD);    //为orig定义一个迭代器并设置迭代方向
    while((node = listNext(iter)) != NULL) {    //迭代器根据迭代方向不停迭代
        void *value;

        //复制节点值到新节点
        if (copy->dup) {
            value = copy->dup(node->value); //如果定义了list结构中的dup指针,则使用该方法拷贝节点值。
            if (value == NULL) {
                listRelease(copy);
                listReleaseIterator(iter);
                return NULL;
            }
        } else
            value = node->value;    //获得当前node的value值

        if (listAddNodeTail(copy, value) == NULL) { //将node节点尾插到copy表头的链表中
            listRelease(copy);
            listReleaseIterator(iter);
            return NULL;
        }
    }
    listReleaseIterator(iter);  //自行释放迭代器
    return copy;    //返回拷贝副本
}

/* Search the list for a node matching a given key.
 * The match is performed using the 'match' method
 * set with listSetMatchMethod(). If no 'match' method
 * is set, the 'value' pointer of every node is directly
 * compared with the 'key' pointer.
 *
 * On success the first matching node pointer is returned
 * (search starts from head). If no matching node exists
 * NULL is returned. */
listNode *listSearchKey(list *list, void *key)  //在list中查找value为key的节点并返回
{
    listIter *iter;
    listNode *node;

    iter = listGetIterator(list, AL_START_HEAD);    //创建迭代器
    while((node = listNext(iter)) != NULL) {        //迭代整个链表
        if (list->match) {                          //如果设置list结构中的match方法,则用该方法比较
            if (list->match(node->value, key)) {
                listReleaseIterator(iter);          //如果找到,释放迭代器返回node地址
                return node;
            }
        } else {
            if (key == node->value) {
                listReleaseIterator(iter);
                return node;
            }
        }
    }
    listReleaseIterator(iter);      //释放迭代器
    return NULL;
}

/* Return the element at the specified zero-based index
 * where 0 is the head, 1 is the element next to head
 * and so on. Negative integers are used in order to count
 * from the tail, -1 is the last element, -2 the penultimate
 * and so on. If the index is out of range NULL is returned. */
listNode *listIndex(list *list, long index) {   //返回下标为index的节点地址
    listNode *n;

    if (index < 0) {
        index = (-index)-1;         //如果下标为负数,从链表尾部开始
        n = list->tail;
        while(index-- && n) n = n->prev;
    } else {
        n = list->head;             //如果下标为正数,从链表头部开始
        while(index-- && n) n = n->next;
    }
    return n;
}

/* Rotate the list removing the tail node and inserting it to the head. */
void listRotate(list *list) {       //将尾节点插到头结点
    listNode *tail = list->tail;

    if (listLength(list) <= 1) return;  //只有一个节点或空链表直接返回

    /* Detach current tail */
    list->tail = tail->prev;        //取出尾节点,更新list的tail指针
    list->tail->next = NULL;
    /* Move it as head */
    list->head->prev = tail;        //将节点插到表头,更新list的head指针
    tail->prev = NULL;
    tail->next = list->head;
    list->head = tail;
}

参考书籍:《Redis设计与实现》——黄健宏