08、ElasticSearch 7.3 实战:倒排索引揭秘及初识分词器(Analyzer)

一、倒排索引

1. 构建倒排索引

例如说有下面两个句子doc1,doc2

 doc1:I really liked my small dogs, and I think my mom also liked them.
doc2:He never liked any dogs, so I hope that my mom will not expect me to liked him.

首先进行英文分词,这个阶段就是初步的倒排索引的建立

term doc1 doc2
I * *
really *
liked * *
my * *
small *
dogs *
and *
think *
mom * *
also *
them *
He *
never *
any *
so *
hope *
that *
will *
not *
expect *
me *
to *
him *

2. 重建倒排索引

normalization正规化,建立倒排索引的时候,会执行一个操作,也就是说对拆分出的各个单词进行相应的处理,以提升后面搜索的时候能够搜索到相关联的文档的概率。比如说时态的转换,单复数的转换,同义词的转换,大小写的转换等

 mom ―> mother
liked ―> like
small ―> little
dogs ―> dog

重新建立倒排索引,加入normalization,重建后的倒排索引如下

word doc1 doc2 normalization
I * *
really *
like * * liked ―> like
my * *
little * small ―> little
dog * dogs ―> dog
and *
think *
mother * * mom ―> mother
also *
them *
He *
never *
any *
so *
hope *
that *
will *
not *
expect *
me *
to *
him *

3. 重新搜索

再次用mother liked little dog搜索,就可以搜索到了。对搜索条件经行分词 normalization

 mother -》mom
liked -》like
little -》small
dog -》dogs

这样的话doc1和doc2都会搜索出来

二、分词器 analyzer

1. 什么是分词器 analyzer

作用:简单来说就是切分词语。给你一段句子,然后将这段句子拆分成一个一个的单个的单词,同时对每个单词进行normalization(时态转换,单复数转换)

normalization的好处就是提升召回率(recall)

recall:搜索的时候,增加能够搜索到的结果的数量

analyzer 组成部分:

1、 characterfilter:在一段文本进行分词之前,先进行预处理,比如说最常见的就是,过滤html标签(hello-->hello),&-->and(I&you-->Iandyou);
2、 tokenizer:分词,helloyouandme-->hello,you,and,me;
3、 tokenfilter:lowercase(小写转换),stopword(去除停用词),synonym(同义词处理),例如:dogs-->dog,liked-->like,Tom-->tom,a/the/an-->干掉,mother-->mom,small-->little;

一个分词器,很重要,将一段文本进行各种处理,最后处理好的结果才会拿去建立倒排索引。

2. 内置分词器的介绍

例句:Set the shape to semi-transparent by calling set_trans(5)

standard analyzer标准分词器:set, the, shape, to, semi, transparent, by, calling, set_trans, 5(默认的是standard)

simple analyzer简单分词器:set, the, shape, to, semi, transparent, by, calling, set, trans

whitespace analyzer:Set, the, shape, to, semi-transparent, by, calling, set_trans(5)

language analyzer(特定的语言的分词器,比如说,english,英语分词器):set, shape, semi, transpar, call, set_tran, 5

官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/7.4/analysis-analyzers.html

三、测试分词器

 GET /_analyze
{
  "analyzer": "standard",
  "text": "Text to analyze 80"
}

返回值:

 {
  "tokens" : [
    {
      "token" : "text",
      "start_offset" : 0,
      "end_offset" : 4,
      "type" : "<ALPHANUM>",
      "position" : 0
    },
    {
      "token" : "to",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "<ALPHANUM>",
      "position" : 1
    },
    {
      "token" : "analyze",
      "start_offset" : 8,
      "end_offset" : 15,
      "type" : "<ALPHANUM>",
      "position" : 2
    },
    {
      "token" : "80",
      "start_offset" : 16,
      "end_offset" : 18,
      "type" : "<NUM>",
      "position" : 3
    }
  ]
}

token:实际存储的term 关键字

position:在此词条在原文本中的位置

start_offset/end_offset:字符在原始字符串中的位置